Композиты на основе целлюлозы и металл-органических каркасов для удаления красителей из сточных вод
https://doi.org/10.18412/1816-0387-2024-5-81-96
Аннотация
Промышленные стоки предприятий, использующие красители, являются одними из основных отходов производства, загрязняющих окружающую среду и поверхностные воды. Для решения этой проблемы в последнее время большое внимание уделяется инновационным процессам их удаления. В обзоре рассмотрены исследовательские работы за последние 10 лет по различным биологическим, химическим и физическим методам удаления красителей и сделана оценка их эффективности. Показана возможность применения целлюлозы и материалов на ее основе для процессов удаления красителей из водных растворов. Основное внимание уделено композитам на основе целлюлозы и металл-органических каркасов (Целл-МОКП). Рассмотрены основные подходы к созданию Целл-MOКП материалов и возможности регулирования их свойств. Приведены примеры использования Целл-МОКП материалов для удаления красителей из водных растворов адсорбционным и каталитическим методами. Обсуждены перспективы и проблемы практического их использования.
Ключевые слова
Об авторах
В. Н. ПанченкоРоссия
Е. Ю. Зубкова
Россия
М. Н. Тимофеева
Россия
Список литературы
1. https://www.preventionweb.net/publication/un-general-assembly-resolution/res/55/2-united-nations-millennium-declaration/ - дата обращения 12.04.2024.
2. https://www.marketresearchfuture.com/reports/water-purifier-market-2178/ - дата обращения 06.01.2024
3. https://eng.megaresearch.ru/ - дата обращения 06.01.2024
4. H. Zolinger, Colour chemistry - Synthesis properties of organic dyes and pigments, WileyVCH, Weinheim, 1987.
5. https://www.marketresearchfuture.com/reports/dyes-market-12107/ - дата обращения 01.02.2024
6. https://pubmed.ncbi.nlm.nih.gov/ - дата обращения 02.03.2024
7. Misra N., Rawat S., Goel N. K., Shelkar S. A., Kumar V. // Carbohydr Polym. 2020. V. 249. P. 116902. DOI: 10.1016/j.carbpol.2020.116902
8. Katheresan V., Kansedo J., Lau, S. Y. // J. Environ. Chem. Eng. 2018. V. 6. P. 4676–4697. DOI:10.1016/j.jece.2018.06.060
9. Erdem Ö., Cihangir N. // Hacettepe J. Biol. & Chem. 2017. V. 45. P. 499-507. DOI: 10.15671/HJBC.2018.190
10. Sarioglu O. F., San Keskin N. O., Celebioglu A., Tekinay T., Uyar T. // Chemosphere. 2017. V. 184. P. 393-399. DOI:10.1016/j.chemosphere.2017.06.020
11. Aragaw T. A., Bogale F. M. // Front. Environ. Sci. 2021. V. 9. – P. 764958. DOI:10.3389/fenvs.2021.764958
12. Rauf M. A., Ashraf S.S // Chem. Eng. J. 2012. V. 209. Р. 520- 530. DOI:10.1016/j.cej.2012.08.015.
13. Miklos D. B., Remy C., Jekel M., Linden K. G., Drewes J. E., Hübner U. // Water Res. 2018. V. 139. P. 118-131. DOI:10.1016/j.watres.2018.03.042
14. Hoang N. T., Nguyen V. T., Tuan N. D. M., Manh T. D., Le P.-C., Tac D. V., Mwazighe F. M. // Chemosphere. 2022. V. 298. P. 134197. DOI: 10.1016/j.chemosphere.2022.134197
15. Çobanoğlu K., Değermenci N. // Environ Monit Assess. 2022. V. 194. N 4. P. 302. DOI: 10.1007/s10661-022-09964-z
16. Bolton J.R., Bircher K.G., Tumas W., Tolman C.A. // J. Adv.Oxid. Technol. 1996. V. 1. P. 13-17. DOI: 10.1515/jaots-1996-0104
17. Rapo E., Tonk S. // Molecules. 2021. V. 26. P. 5419. DOI:10.3390/molecules26175419
18. Putri K.N.A., Keereerak A., Chinpa W. // Int. J. Biol. Macromol. 2020. V. 156. P. 762–772. DOI: 10.1016/j.ijbiomac.2020.04.100
19. Peng D., Cheng S., Li H., Guo X. // Chemosphere. 2021. V. 272. P. 129963. DOI:10.1016/j.chemosphere.2021.129963
20. Bagotia N., Sharma A.K., Kumar S. // Chemosphere. 2021. V. 268. P. 129309. DOI:10.1016/j.chemosphere.2020.129309
21. Rezende C.A., de Lima M.A., Maziero P., de Azevedo E.R., Garcia W., Polikarpov I. // Biotechnol. Biofuels. 2011. V. 4. P. 54. DOI: 10.1186/1754-6834-4-54
22. Zhou Y., Zhang L., Cheng Z. // J. Mol. Liq. 2015. V. 212. P. 739-762. DOI:10.1016/j.molliq.2015.10.023
23. Iwuozor K. O., Ighalo J.O., Emenike E.C., Ogunfowora L. A., Igwegbe C. A. // J. Current Research in Green and Sustainable Chemistry. 2021. Vol. 4. № 4. P. 100179. DOI:10.1016/j.crgsc.2021.100179
24. Zhang Z., O’Hara I.M., Kent G.A., Doherty W.O. // Ind. Crop. Prod. 2013. V. 42. P. 41-49. DOI: 10.1016/j.indcrop.2012.05.008
25. Patel A., Patel P., Shukla A., Wong W. C., Varjani S., Gosai H. // Current Pollution Reports. 2023. V. 9. P. 226–242. DOI: 10.1007/s40726-023-00257-8
26. Скворцова З. Н., Громовых Т. И., Грачев В. С., Траскин В. Ю. // Коллоидный журнал. 2019. Т. 81. № 4. С. 441–452. DOI: 10.1134/S0023291219040165
27. Колобова С.А., Назмутдинов Д.З., Петухова Н.И., Халимова Л.Х. // Башкирский химический журнал. 2019. Т. 26. № 1. С. 105-111. DOI:/10.17122/bcj-2019-1-105-111
28. Le H. V., Dao N. T., Bui H. T., Le P. T. K., Le K. A., Tran A. T. T., Nguyen K. D., Nguyen H. H. M., Ho P. H. // ACS Omega. 2023. V. 8. N 37. P. 33412-33425. DOI:10.1021/acsomega.3c03130
29. Noreen S., Bhatti H.N. // J. Ind. Eng. Chem. 2014. V. 20. P. 1684-1692. DOI:10.1016/j.jiec.2013.08.017
30. Bhatti H.N., Nausheen S. // Desalin. Water Treat. 2015. V. 55. P. 1934-1944. DOI:10.1080/19443994.2014.927799
31. Ge M., Du M., Zheng L., Wang B., Zhou X., Jia Z., Hu G., Alam S.J. // Mater. Chem. Phys. 2017. V. 192. P. 147-155. DOI: 10.1016/j.matchemphys.2017.01.063
32. Tian X., Yang R., Chen T., Cao Y., Deng H., Zhang M., Jiang X. // J Hazard Mater. 2022. V. 426. P. 128121. DOI: 10.1016/j.jhazmat.2021.128121
33. Li B., Zhang Q., Pan Y., Li Y., Huang Z., Li M., Xiao H. // Int J Biol Macromol. 2020. V. 163. P. 309-316. DOI: 10.1016/j.ijbiomac.2020.06.280
34. Ali R., Elsagan Z., Elhafez A. // Molecules. 2022. V. 27. N 6. P. 1831. DOI:10.3390/molecules27061831.
35. Hu L., Guang C., Liu Y., Su Z., Gong S., Yao Y., Wang Y. // Chemosphere. 2020. V. 246. P. 125757. DOI: 10.1016/j.chemosphere.2019.125757
36. Kamel S., El-Gendy A.A., Hassan M. A., El-Sakhawy M., Kelnar I. // Carbohydr Polym. 2020. V. 242. P. 116402. DOI: 10.1016/j.carbpol.2020.116402
37. Chen C., He E., Jia W., Xia S., Yu L. // Int J Biol Macromol. 2023. V. 253. P. 126985. DOI: 10.1016/j.ijbiomac.2023.126985
38. Schelling M., Kim M., Otal E., Hinestroza J. // Bioengineering (Basel). 2018. V. 5. N 1. P. 14. DOI: 10.3390/bioengineering5010014
39. Liu X., Xiao Y., Zhang Z., You Z., Li J., Ma D., Li B. // Chin. J. Chem. 2021. V. 39. P. 3462-3480. DOI: 10.1002/cjoc.202100534
40. Bingnan Y., Ling L., Vignesh M., Sravanthi V., Jinwu W., Nasim A., Zhanhu, G. // ES Food & Agroforestry. 2020. V. 1. P. 41-52. DOI: 10.30919/esfaf0004.
41. Bej S., Sarma H., Ghosh M., Banerjee P. // Environ Pollut. 2023. V. 323. P. 121278. DOI: 10.1016/j.envpol.2023.121278
42. Emam H. E., Darwesh O. M., Abdelhameed R. M. // Colloids Surf B Biointerfaces. 2018. V. 165. P. 219-228. DOI: 10.1016/j.colsurfb.2018.02.028
43. Zhu L., Zong L., Wu X., Li M., Wang H., You J., Li C. // ACS Nano. 2018. V. 12. P. 4462–4468. DOI: 10.1021/acsnano.8b00566
44. Muhamed, S, Sunny, B., Kunjattu, S. H., Alagarsamy, T., Composites of HKUST-1@Nanocellulose for Gas-Separation and Dye-Sorption Applications // Chemistry. – 2023. – V. 29. N 34. P. 202300674. DOI: 10.1002/chem.202300674.
45. Duan C., Meng X., Liu C., Lu W., Liu J., Dai L., Wang W., Zhao W., Xiong C., Ni Y. // Carbohydr. Polym. 2019. V. 222. P. 115042. DOI:10.1016/j.carbpol.2019.115042
46. Ashour R. M., Abdel-Magied A. F., Wu Q., Olsson R. T., Forsberg K. // Polymers. 2020. V. 12. P. 1104. DOI: 10.3390/polym12051104
47. Zhu H., Yang X., Cranston E.D., Zhu S. // Adv. Mater. 2016 V. 28. N 35. P. 7652–7657. DOI: 10.1002/adma.201601351.
48. Huang C., Cai B., Zhang L., Zhang C., Pan H. // J. Solid State Chem. 2021. V. 297. P. 122030. DOI: 10.1016/j.jssc.2021.122030
49. Aghaei F., Tangestaninejad S., Bahadori M., Moghadam M., Mirkhani V., Baltork I. M., Khalaji M., Asadi V. // J Colloid Interface Sci. 2023. V. 648. P. 78-89. DOI:10.1016/j.jcis.2023.05.170
50. Wang Z., Song L., Wang Y., Zhang X.-F., Hao D., Feng Y., Yao J. // Chem. Eng. J. 2019. V. 371. P. 138–144. DOI: 10.1016/j.cej.2019.04.022
51. Hashem T., Ibrahim A.H., Woll C., Alkordi M.H. // ACS Appl. Nano Mater. 2019. V. 2. N 9. P. 5804–5808. DOI: 10.1021/acsanm.9b01263.
52. Mai T., Wang P.-L., Yuan Q., Maa C., Ma M.-G. // Nanoscale. 2021. V. 13. P. 18210-18217. DOI: 10.1039/D1NR05388D
53. Song W., Zhu M., Zhu Y., Zhao Y., Yang M., Miao Z., Ren H., Ma Q., Qian L., // Cellulose. 2020. V. 27. P. 2161-2172. DOI: 10.1007/s10570-019-02883-2
54. Park J., Oh M., // Nanoscale. 2017. V. 9. N 35. P. 12850–12854. DOI:10.1039/C7NR04113F
55. Marsiezade N., Javanbakht V. // Int. J. Biol. Macromol. 2020. V. 162. P. 1140-1152. DOI: 10.1016/j.ijbiomac.2020.06.229
56. Yang H., Zhang P., Zheng Q., Hameed M. U., Raza S. // Int. J. Biol. Macromol. 2023. V. 253. N 4. P. 126986. DOI: 10.1016/j.ijbiomac.2023.126986
57. Vatanpour V., Yuksekdag A., Ağtaş M., Mehrabi M., Salehi E., Castro-Muñoz R., Koyuncu I. // Carbohydr Polym. 2023. V. 299. P. 120230. DOI:10.1016/j.carbpol.2022.120230
58. Zhu W., Han M., Kim D., Zhang Y., Kwon G., You J., Jia C., Kim J. // Environ. Res. 2022. V. 205. P. 112417. DOI: 10.1016/j.envres.2021.112417
59. Ren W., Gao J., Lei C., Xie Y., Cai Y., Ni Q., Yao J. // Chem. Eng. J. 2018. V. 349. P. 766–774. DOI: 10.1016/j.cej.2018.05.143
60. Zhao M., Fang G., Zhang S., Liang L., Yao S., Wu T. // Int. J. Biol. Macromol. 2023. V. 230. P. 123276. DOI: 10.1016/j.ijbiomac.2023.123276
61. Lin Y., Wang Q., Huang Y., Du J., Cheng Y., Lu J., Tao Y., Wang H. // Int J Biol Macromol. 2023. V. 247. P. 125559. DOI: 10.1016/j.ijbiomac.2023.125559
62. Zhang S., Zhao M., Li H., Hou C., Du M. // Cellulose. 2021. V. 28. P. 3585–3598. DOI: 10.1007/s10570-021-03717-w
63. Cong J., Lei F., Zhao T., Liu H., Wang J., Lu M., Gao J. // . Solid State Chem. 2017. V. 256. P. 10-13. DOI: 10.1016/j.jssc.2017.08.031
64. Bordiga S., Lamberti C., Ricchiardi G., Regli L., Bonino F., Damin A., Lillerud K. P., Bjorgen M., Zecchina A. // Chem. Commun. 2004. P. 2300-2301. DOI:10.1039/B407246D
65. Nasalevich M. A., van der Veen M., Kapteijn F., Gascon J. // CrystEngComm. 2014. V. 16. P. 4919 -4926. DOI: 10.1039/c4ce00032c
66. He U., Zhang Y., He J., Zeng X., Hou X., Long Z. // Chem. Commun. 2018. V. 54. P. 8610-8613. DOI: 10.1039/c8cc04891f
67. Wang D., Wang M., Li Z. // ACS Catal. 2015. V. 5. P. 6852-6857. DOI:10.1021/acscatal.5b01949
68. Kozlova E. A., Panchenko V. N., Hasan Z., Khan N. A., Timofeeva M. N., Jhung S. H. // Catalysis Today. 2016. V. 266. . 136-143. DOI: 10.1016/j.cattod.2015.07.026
69. Wang Q., Gao Q., Al-Enizi A. M., Nafady A., Ma S. // Inorg. Chem. Front. 2020. V. 7. P. 300-339. DOI: 10.1039/C9QI01120J
70. Tao Y., Du J., Cheng Y., Lu J., Min D., Wang H. // Int. J. Mol. Sci. 2023. V. 24. P. 7744. DOI: 10.3390/ijms24097744
71. Ma J., Hu J., Tang Y., Gu H., Jiang M., Zhang J. // J. Colloid and Interface Sci. 2020. V. 572. P. 160–169. DOI: 10.1016/j.jcis.2020.03.076
Рецензия
Для цитирования:
Панченко В.Н., Зубкова Е.Ю., Тимофеева М.Н. Композиты на основе целлюлозы и металл-органических каркасов для удаления красителей из сточных вод. Катализ в промышленности. 2024;24(5):81-96. https://doi.org/10.18412/1816-0387-2024-5-81-96
For citation:
Panchenko V.N., Zubkova E.Yu., Timofeeva M.N. Composites based on cellulose and metal-organic frameworks for dye removal from wastewater. Kataliz v promyshlennosti. 2024;24(5):81-96. (In Russ.) https://doi.org/10.18412/1816-0387-2024-5-81-96