Preview

Kataliz v promyshlennosti

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Composites based on cellulose and metal-organic frameworks for dye removal from wastewater

https://doi.org/10.18412/1816-0387-2024-5-81-96

Abstract

Industrial effluents from enterprises using dyes are among the main production wastes polluting the environment and surface waters. In order to solve this problem, much attention has recently been paid to innovative processes for their removal. The review considers research works over the past 10 years on various biological, chemical and physical methods for dye removal and assesses their effectiveness. The possibility of using cellulose and cellulose-based materials for dye removal from aqueous solutions is shown. The main attention is paid to composites based on cellulose and metal-organic frameworks (Cell-MOF). The main approaches to the creation of Cell-MOF materials and the possibility of regulating their properties are considered. Examples of using Cell-MOF materials for removing dyes from aqueous solutions by adsorption and catalytic methods are given. Prospects and problems of their practical use are discussed.

About the Authors

V. N. Panchenko
Novosibirsk State Technical University (NSTU), Novosibirsk; Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


E. Yu. Zubkova
Novosibirsk State Technical University (NSTU), Novosibirsk
Russian Federation


M. N. Timofeeva
Novosibirsk State Technical University (NSTU), Novosibirsk; Boreskov Institute of Catalysis SB RAS, Novosibirsk
Russian Federation


References

1. https://www.preventionweb.net/publication/un-general-assembly-resolution/res/55/2-united-nations-millennium-declaration/ - дата обращения 12.04.2024.

2. https://www.marketresearchfuture.com/reports/water-purifier-market-2178/ - дата обращения 06.01.2024

3. https://eng.megaresearch.ru/ - дата обращения 06.01.2024

4. H. Zolinger, Colour chemistry - Synthesis properties of organic dyes and pigments, WileyVCH, Weinheim, 1987.

5. https://www.marketresearchfuture.com/reports/dyes-market-12107/ - дата обращения 01.02.2024

6. https://pubmed.ncbi.nlm.nih.gov/ - дата обращения 02.03.2024

7. Misra N., Rawat S., Goel N. K., Shelkar S. A., Kumar V. // Carbohydr Polym. 2020. V. 249. P. 116902. DOI: 10.1016/j.carbpol.2020.116902

8. Katheresan V., Kansedo J., Lau, S. Y. // J. Environ. Chem. Eng. 2018. V. 6. P. 4676–4697. DOI:10.1016/j.jece.2018.06.060

9. Erdem Ö., Cihangir N. // Hacettepe J. Biol. & Chem. 2017. V. 45. P. 499-507. DOI: 10.15671/HJBC.2018.190

10. Sarioglu O. F., San Keskin N. O., Celebioglu A., Tekinay T., Uyar T. // Chemosphere. 2017. V. 184. P. 393-399. DOI:10.1016/j.chemosphere.2017.06.020

11. Aragaw T. A., Bogale F. M. // Front. Environ. Sci. 2021. V. 9. – P. 764958. DOI:10.3389/fenvs.2021.764958

12. Rauf M. A., Ashraf S.S // Chem. Eng. J. 2012. V. 209. Р. 520- 530. DOI:10.1016/j.cej.2012.08.015.

13. Miklos D. B., Remy C., Jekel M., Linden K. G., Drewes J. E., Hübner U. // Water Res. 2018. V. 139. P. 118-131. DOI:10.1016/j.watres.2018.03.042

14. Hoang N. T., Nguyen V. T., Tuan N. D. M., Manh T. D., Le P.-C., Tac D. V., Mwazighe F. M. // Chemosphere. 2022. V. 298. P. 134197. DOI: 10.1016/j.chemosphere.2022.134197

15. Çobanoğlu K., Değermenci N. // Environ Monit Assess. 2022. V. 194. N 4. P. 302. DOI: 10.1007/s10661-022-09964-z

16. Bolton J.R., Bircher K.G., Tumas W., Tolman C.A. // J. Adv.Oxid. Technol. 1996. V. 1. P. 13-17. DOI: 10.1515/jaots-1996-0104

17. Rapo E., Tonk S. // Molecules. 2021. V. 26. P. 5419. DOI:10.3390/molecules26175419

18. Putri K.N.A., Keereerak A., Chinpa W. // Int. J. Biol. Macromol. 2020. V. 156. P. 762–772. DOI: 10.1016/j.ijbiomac.2020.04.100

19. Peng D., Cheng S., Li H., Guo X. // Chemosphere. 2021. V. 272. P. 129963. DOI:10.1016/j.chemosphere.2021.129963

20. Bagotia N., Sharma A.K., Kumar S. // Chemosphere. 2021. V. 268. P. 129309. DOI:10.1016/j.chemosphere.2020.129309

21. Rezende C.A., de Lima M.A., Maziero P., de Azevedo E.R., Garcia W., Polikarpov I. // Biotechnol. Biofuels. 2011. V. 4. P. 54. DOI: 10.1186/1754-6834-4-54

22. Zhou Y., Zhang L., Cheng Z. // J. Mol. Liq. 2015. V. 212. P. 739-762. DOI:10.1016/j.molliq.2015.10.023

23. Iwuozor K. O., Ighalo J.O., Emenike E.C., Ogunfowora L. A., Igwegbe C. A. // J. Current Research in Green and Sustainable Chemistry. 2021. Vol. 4. № 4. P. 100179. DOI:10.1016/j.crgsc.2021.100179

24. Zhang Z., O’Hara I.M., Kent G.A., Doherty W.O. // Ind. Crop. Prod. 2013. V. 42. P. 41-49. DOI: 10.1016/j.indcrop.2012.05.008

25. Patel A., Patel P., Shukla A., Wong W. C., Varjani S., Gosai H. // Current Pollution Reports. 2023. V. 9. P. 226–242. DOI: 10.1007/s40726-023-00257-8

26. Скворцова З. Н., Громовых Т. И., Грачев В. С., Траскин В. Ю. // Коллоидный журнал. 2019. Т. 81. № 4. С. 441–452. DOI: 10.1134/S0023291219040165

27. Колобова С.А., Назмутдинов Д.З., Петухова Н.И., Халимова Л.Х. // Башкирский химический журнал. 2019. Т. 26. № 1. С. 105-111. DOI:/10.17122/bcj-2019-1-105-111

28. Le H. V., Dao N. T., Bui H. T., Le P. T. K., Le K. A., Tran A. T. T., Nguyen K. D., Nguyen H. H. M., Ho P. H. // ACS Omega. 2023. V. 8. N 37. P. 33412-33425. DOI:10.1021/acsomega.3c03130

29. Noreen S., Bhatti H.N. // J. Ind. Eng. Chem. 2014. V. 20. P. 1684-1692. DOI:10.1016/j.jiec.2013.08.017

30. Bhatti H.N., Nausheen S. // Desalin. Water Treat. 2015. V. 55. P. 1934-1944. DOI:10.1080/19443994.2014.927799

31. Ge M., Du M., Zheng L., Wang B., Zhou X., Jia Z., Hu G., Alam S.J. // Mater. Chem. Phys. 2017. V. 192. P. 147-155. DOI: 10.1016/j.matchemphys.2017.01.063

32. Tian X., Yang R., Chen T., Cao Y., Deng H., Zhang M., Jiang X. // J Hazard Mater. 2022. V. 426. P. 128121. DOI: 10.1016/j.jhazmat.2021.128121

33. Li B., Zhang Q., Pan Y., Li Y., Huang Z., Li M., Xiao H. // Int J Biol Macromol. 2020. V. 163. P. 309-316. DOI: 10.1016/j.ijbiomac.2020.06.280

34. Ali R., Elsagan Z., Elhafez A. // Molecules. 2022. V. 27. N 6. P. 1831. DOI:10.3390/molecules27061831.

35. Hu L., Guang C., Liu Y., Su Z., Gong S., Yao Y., Wang Y. // Chemosphere. 2020. V. 246. P. 125757. DOI: 10.1016/j.chemosphere.2019.125757

36. Kamel S., El-Gendy A.A., Hassan M. A., El-Sakhawy M., Kelnar I. // Carbohydr Polym. 2020. V. 242. P. 116402. DOI: 10.1016/j.carbpol.2020.116402

37. Chen C., He E., Jia W., Xia S., Yu L. // Int J Biol Macromol. 2023. V. 253. P. 126985. DOI: 10.1016/j.ijbiomac.2023.126985

38. Schelling M., Kim M., Otal E., Hinestroza J. // Bioengineering (Basel). 2018. V. 5. N 1. P. 14. DOI: 10.3390/bioengineering5010014

39. Liu X., Xiao Y., Zhang Z., You Z., Li J., Ma D., Li B. // Chin. J. Chem. 2021. V. 39. P. 3462-3480. DOI: 10.1002/cjoc.202100534

40. Bingnan Y., Ling L., Vignesh M., Sravanthi V., Jinwu W., Nasim A., Zhanhu, G. // ES Food & Agroforestry. 2020. V. 1. P. 41-52. DOI: 10.30919/esfaf0004.

41. Bej S., Sarma H., Ghosh M., Banerjee P. // Environ Pollut. 2023. V. 323. P. 121278. DOI: 10.1016/j.envpol.2023.121278

42. Emam H. E., Darwesh O. M., Abdelhameed R. M. // Colloids Surf B Biointerfaces. 2018. V. 165. P. 219-228. DOI: 10.1016/j.colsurfb.2018.02.028

43. Zhu L., Zong L., Wu X., Li M., Wang H., You J., Li C. // ACS Nano. 2018. V. 12. P. 4462–4468. DOI: 10.1021/acsnano.8b00566

44. Muhamed, S, Sunny, B., Kunjattu, S. H., Alagarsamy, T., Composites of HKUST-1@Nanocellulose for Gas-Separation and Dye-Sorption Applications // Chemistry. – 2023. – V. 29. N 34. P. 202300674. DOI: 10.1002/chem.202300674.

45. Duan C., Meng X., Liu C., Lu W., Liu J., Dai L., Wang W., Zhao W., Xiong C., Ni Y. // Carbohydr. Polym. 2019. V. 222. P. 115042. DOI:10.1016/j.carbpol.2019.115042

46. Ashour R. M., Abdel-Magied A. F., Wu Q., Olsson R. T., Forsberg K. // Polymers. 2020. V. 12. P. 1104. DOI: 10.3390/polym12051104

47. Zhu H., Yang X., Cranston E.D., Zhu S. // Adv. Mater. 2016 V. 28. N 35. P. 7652–7657. DOI: 10.1002/adma.201601351.

48. Huang C., Cai B., Zhang L., Zhang C., Pan H. // J. Solid State Chem. 2021. V. 297. P. 122030. DOI: 10.1016/j.jssc.2021.122030

49. Aghaei F., Tangestaninejad S., Bahadori M., Moghadam M., Mirkhani V., Baltork I. M., Khalaji M., Asadi V. // J Colloid Interface Sci. 2023. V. 648. P. 78-89. DOI:10.1016/j.jcis.2023.05.170

50. Wang Z., Song L., Wang Y., Zhang X.-F., Hao D., Feng Y., Yao J. // Chem. Eng. J. 2019. V. 371. P. 138–144. DOI: 10.1016/j.cej.2019.04.022

51. Hashem T., Ibrahim A.H., Woll C., Alkordi M.H. // ACS Appl. Nano Mater. 2019. V. 2. N 9. P. 5804–5808. DOI: 10.1021/acsanm.9b01263.

52. Mai T., Wang P.-L., Yuan Q., Maa C., Ma M.-G. // Nanoscale. 2021. V. 13. P. 18210-18217. DOI: 10.1039/D1NR05388D

53. Song W., Zhu M., Zhu Y., Zhao Y., Yang M., Miao Z., Ren H., Ma Q., Qian L., // Cellulose. 2020. V. 27. P. 2161-2172. DOI: 10.1007/s10570-019-02883-2

54. Park J., Oh M., // Nanoscale. 2017. V. 9. N 35. P. 12850–12854. DOI:10.1039/C7NR04113F

55. Marsiezade N., Javanbakht V. // Int. J. Biol. Macromol. 2020. V. 162. P. 1140-1152. DOI: 10.1016/j.ijbiomac.2020.06.229

56. Yang H., Zhang P., Zheng Q., Hameed M. U., Raza S. // Int. J. Biol. Macromol. 2023. V. 253. N 4. P. 126986. DOI: 10.1016/j.ijbiomac.2023.126986

57. Vatanpour V., Yuksekdag A., Ağtaş M., Mehrabi M., Salehi E., Castro-Muñoz R., Koyuncu I. // Carbohydr Polym. 2023. V. 299. P. 120230. DOI:10.1016/j.carbpol.2022.120230

58. Zhu W., Han M., Kim D., Zhang Y., Kwon G., You J., Jia C., Kim J. // Environ. Res. 2022. V. 205. P. 112417. DOI: 10.1016/j.envres.2021.112417

59. Ren W., Gao J., Lei C., Xie Y., Cai Y., Ni Q., Yao J. // Chem. Eng. J. 2018. V. 349. P. 766–774. DOI: 10.1016/j.cej.2018.05.143

60. Zhao M., Fang G., Zhang S., Liang L., Yao S., Wu T. // Int. J. Biol. Macromol. 2023. V. 230. P. 123276. DOI: 10.1016/j.ijbiomac.2023.123276

61. Lin Y., Wang Q., Huang Y., Du J., Cheng Y., Lu J., Tao Y., Wang H. // Int J Biol Macromol. 2023. V. 247. P. 125559. DOI: 10.1016/j.ijbiomac.2023.125559

62. Zhang S., Zhao M., Li H., Hou C., Du M. // Cellulose. 2021. V. 28. P. 3585–3598. DOI: 10.1007/s10570-021-03717-w

63. Cong J., Lei F., Zhao T., Liu H., Wang J., Lu M., Gao J. // . Solid State Chem. 2017. V. 256. P. 10-13. DOI: 10.1016/j.jssc.2017.08.031

64. Bordiga S., Lamberti C., Ricchiardi G., Regli L., Bonino F., Damin A., Lillerud K. P., Bjorgen M., Zecchina A. // Chem. Commun. 2004. P. 2300-2301. DOI:10.1039/B407246D

65. Nasalevich M. A., van der Veen M., Kapteijn F., Gascon J. // CrystEngComm. 2014. V. 16. P. 4919 -4926. DOI: 10.1039/c4ce00032c

66. He U., Zhang Y., He J., Zeng X., Hou X., Long Z. // Chem. Commun. 2018. V. 54. P. 8610-8613. DOI: 10.1039/c8cc04891f

67. Wang D., Wang M., Li Z. // ACS Catal. 2015. V. 5. P. 6852-6857. DOI:10.1021/acscatal.5b01949

68. Kozlova E. A., Panchenko V. N., Hasan Z., Khan N. A., Timofeeva M. N., Jhung S. H. // Catalysis Today. 2016. V. 266. . 136-143. DOI: 10.1016/j.cattod.2015.07.026

69. Wang Q., Gao Q., Al-Enizi A. M., Nafady A., Ma S. // Inorg. Chem. Front. 2020. V. 7. P. 300-339. DOI: 10.1039/C9QI01120J

70. Tao Y., Du J., Cheng Y., Lu J., Min D., Wang H. // Int. J. Mol. Sci. 2023. V. 24. P. 7744. DOI: 10.3390/ijms24097744

71. Ma J., Hu J., Tang Y., Gu H., Jiang M., Zhang J. // J. Colloid and Interface Sci. 2020. V. 572. P. 160–169. DOI: 10.1016/j.jcis.2020.03.076


Review

For citations:


Panchenko V.N., Zubkova E.Yu., Timofeeva M.N. Composites based on cellulose and metal-organic frameworks for dye removal from wastewater. Kataliz v promyshlennosti. 2024;24(5):81-96. (In Russ.) https://doi.org/10.18412/1816-0387-2024-5-81-96

Views: 26


ISSN 1816-0387 (Print)
ISSN 2413-6476 (Online)